A Multi-Layer MRF Model for Video Object Segmentation

نویسندگان

  • Zoltan Kato
  • Ting-Chuen Pong
چکیده

A novel video object segmentation method is proposed which aims at combining color and motion information. The model has a multilayer structure: Each feature has its own layer, called feature layer, where a classical Markov random field (MRF) image segmentation model is defined using only the corresponding feature. A special layer is assigned to the combined MRF model, called combined layer, which interacts with each feature layer and provides the segmentation based on the combination of different features. Unlike previous methods, our approach doesn’t assume motion boundaries being part of spatial ones. Therefore a very important property of the proposed method is the ability to detect boundaries that are visible only in the motion feature as well as those visible only in the color one. The method is validated on synthetic and real video sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CNN in MRF: Video Object Segmentation via Inference in A CNN-Based Higher-Order Spatio-Temporal MRF

This paper addresses the problem of video object segmentation, where the initial object mask is given in the first frame of an input video. We propose a novel spatiotemporal Markov Random Field (MRF) model defined over pixels to handle this problem. Unlike conventional MRF models, the spatial dependencies among pixels in our model are encoded by a Convolutional Neural Network (CNN). Specificall...

متن کامل

Moving object detection using Markov Random Field and Distributed Differential Evolution

In this article, we present an algorithm for detecting moving objects from a given video sequence. Here, spatial and temporal segmentations are combined together to detect moving objects. In spatial segmentation, a multi-layer compound Markov Random Field (MRF) is used which models spatial, temporal, and edge attributes of image frames of a given video. Segmentation is viewed as a pixel labelin...

متن کامل

Unsupervised segmentation of color textured images using a multilayer MRF model

Herein, we propose a novel multi-layer Markov random field (MRF) image segmentation model which aims at combining color and texture features: Each feature is associated to a so called feature layer, where an MRF model is defined using only the corresponding feature. A special layer is assigned to the combined MRF model. This layer interacts with each feature layer and provides the segmentation ...

متن کامل

Implicit Active-Contouring with MRF

In this paper, we present a new image segmentation method based on energy minimization for iteratively evolving an implicit active contour. Methods for active contour evolution is important in many applications ranging from video post-processing to medical imaging, where a single object must be chosen from a multi-object collection containing objects sharing similar characteristics. Level set m...

متن کامل

A New Spatio-Temporal MRF Framework for Video-based Object Segmentation

In this paper we propose a general framework for videobased object segmentation using a new spatio-temporal Markov Random Field (MRF) model. Video-based object segmentation has the potential to improve the performance of static image segmentation by fusing information over the temporal scale. Built upon a spatio-temporal MRF model, our method offers three advantages in a unified framework. Firs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006